
Nonperturbative retrieval of the scattering strength in one-dimensional media

K. D. Lamb, S. Menon, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit, and Department of Physics, Illinois State University, Normal, Illinois 61790-4560, USA

�Received 15 February 2006; revised manuscript received 7 September 2006; published 8 December 2006�

We examine several approaches on how to use the transmission and reflection amplitudes as functions of the
modulation frequency of the laser’s intensity to reconstruct the position-dependent scattering coefficient for a
simple turbid medium. We explore the region where the contrast between the coefficient and its spatially
averaged value is large enough such that perturbative methods fail. We show that in the case of a transillumi-
nation geometry, the knowledge of the transmission profile alone is not sufficient for unique image reconstruc-
tion, whereas the reflection spectrum allows for a complete inversion. We demonstrate the invertibility for
media sampled at only a few positions.
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I. INTRODUCTION

The interaction of electromagnetic radiation with highly
scattering media has been studied for several decades, en-
compassing a wide variety of fundamental and applied re-
search areas including medical therapy, radar transmission
and reception, astronomy, semiconductor technology, and
photonics. While some applications make use of the coher-
ence property of electromagnetic waves and their carrier fre-
quency, others exploit the intensity of the radiation and its
incoherent interaction with turbid media. Depending on the
type of interaction, the prediction of the propagation proper-
ties is either based on solutions to the Maxwell theory, the
Boltzmann equation, or the diffusion approximation �1,2�.

In the forward problem one assumes complete knowledge
of all optical parameters that characterize the highly scatter-
ing medium, denoted here by the set of parameters or func-
tions ���. The goal is to predict the properties of the scat-
tered light, denoted by �S�. In other words, one tries to
compute a function or functional F, which maps the first set
of numbers into the second one, �S�=F�����. In most situa-
tions, it is difficult to calculate the nonlinear functional rela-
tionship F�. . .�; in fact, only the diffusion approximation per-
mits analytical formulas, whereas the solutions of the
Maxwell equations require typically numerical techniques
�3,4�, and the solutions of the Boltzmann equation require
Monte Carlo simulations �5� based on random processes.

In the inverse problem, the general goal is to analyze the
properties of the scattered light �S� and to deduce the original
scattering parameters characterizing the medium, ���
=F−1��S��. There is a wide range of literature contesting to
the intrinsic difficulties with regard to the uniqueness and the
existence of this inverse function. Problems are often ill de-
fined, or fluctuations in the input parameters �S� for such a
theory can have a drastic effect on the form of F−1� �. Inver-
sion problems �6–9� have been studied mainly in the context
of electromagnetic wave scattering of inhomogeneous di-
electric media or acoustic scattering �10�. For instance, sev-
eral works have explored the possibility of reconstructing the
permittivity profiles for layered dielectric materials from the
frequency dependency of the reflected light using iterative
nonlinear optimization schemes to the Ricatti partial differ-
ential equation �11�. In this case, the scattering is induced

exclusively by an index of refraction mismatch at the inter-
faces.

In the area of bio-optical imaging of turbid media such as
tissues, a great deal of progress has been reported in the last
decade �12�. Here nearly all studies focused on the diffusion
approximation as the forward model and used either pertur-
bative or optimization methods �13–15� to reconstruct the
spatial dependence of the scattering coefficient, ��x�, from
the dependence of the scattered light on the location of the
set of detectors, S�x�.

Recently we proposed another controllable parameter in
the input light to reconstruct ��x� �16,17�. We showed for a
simplified one-dimensional model system that the modula-
tion frequency � for the intensity of the laser beam can be
used as a new degree of freedom for imaging. There has been
a wide variety of experimental studies reported that exploit
intensity-modulated light �18–22�, but typically only for a
single or a few modulation frequencies. The use of intensity-
modulated radiation to probe the optical scattering properties
is not new in bio-optical imaging. In fact, the prediction
under the diffusion approximation under oscillating source
terms has been studied in many areas of science �21�. In
1990 Gratton and co-workers �18� used photon density
waves that were modulated in the megahertz to gigahertz
region and measured the resulting shift in phase and attenu-
ation of the ac component of the signal after propagation to
predict the reduced scattering and absorption coefficients
�23�. Several other approaches have used a wider set of fre-
quencies to improve the accuracy of such a prediction
�24–28�. In other studies it was shown that the photon den-
sity waves decay exponentially but have all the properties
associated with typical wave forms, such as interference
�29,30�, refraction �31�, and diffraction �32�. In none of these
approaches was the continuity of measurements in the modu-
lation frequency necessary. To the best of our knowledge, the
resulting theoretical analysis used the experimental data for
one modulation frequency at a time, and the measurements at
different frequency values were used only to complement
each other or to improve the accuracy by providing indepen-
dent data.

In our analysis below we will show that derivatives of
various scattering coefficients with regard to the modulation
frequency permit analytical inversion formulas. In order to
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obtain these derivatives a continuous range of frequencies
must be measured. This approach based on continuous fre-
quency scans is similar in spirit to the work by McGill et al.
�17�, where the Fourier transform over all modulation fre-
quencies was required to obtain inversion.

The particular model used in the study �16� restricts the
light to only the forward and backward directions but dis-
plays many of the difficulties and characteristics of a three-
dimensional system. It has been used to study many funda-
mental questions about light scattering in random media
�33–37�. To demonstrate the feasibility of the modulation
frequency scans, we assumed in �17� that the position-
dependent scattering coefficient differs only slightly from its
constant background value ��x�=�+���x�. Here ���x� rep-
resents the contrast in scattering strength associated with an
object hidden inside the turbid medium. The corresponding
Boltzmann equation can then be solved perturbatively to first
order in the variation ���x� /�. This approximated forward
problem permitted a fully analytical solution S���
=F����x��, which then could be inverted exactly, leading to
���x�=F−1�S����. The functional form of F−1� � involved an
integral transformation, and numerical examples showed the
limitations of this method. Physically, the assumption about a
small variation ���x� restricted the interaction due to the
object to only single scattering events.

The key question that we would like to address in this
note is rather fundamental. Is it at all possible to obtain a
unique image of an object embedded in a turbid medium if it
permits multiple scattering? Mathematically, the challenge
would be to find an example of an inversion scheme that
would not rely on perturbative approximations to the forward
problem. Unfortunately, most known imaging schemes are
based on these perturbative expansions of the diffusion ap-
proximation and therefore limit the object’s response to the
laser field to only single scattering. This is related to echo
techniques, where the object to be detected can scatter the
light only once. The question arises whether the linearization
is just an advantageous mathematical method to obtain solu-
tions or if it is actually a physical requirement for unique-
ness.

In order to address this fundamental question, we use
again the simplicity of the one-dimensional scattering system
discussed in �16,17�. In this case, the measurable quantities
are the complex reflection and transmission amplitudes R���
and T��� as a function of the modulation frequency � of the
intensity of the input beam. Is it possible to uniquely recon-
struct the position-dependent scattering coefficient ��x� from
R��� and T���? If only the reflected light spectrum R��� is
available for measurement, such as in the case of a semi-
infinite medium, is a unique determination of a hidden object
possible at all? Or similarly, could a transillumination geom-
etry and the corresponding information contained in the
transmission spectrum T��� provide sufficient information to
reconstruct the medium?

Despite the relatively simple nature of this reduced di-
mensional system, this problem is quite challenging from a
mathematical point of view, and a complete and general so-
lution F−1� � would involve inverting an infinite set of
coupled transcendental equations. Even if a complete ana-

lytical solution cannot be given at the moment, it would be
desirable to find at least algorithmic solutions that could be
implemented by a computer. In this work, we will report a
first step toward the latter goal by examining multislab con-
figurations with piecewise constant scattering coefficients.

The work is organized as follows. In Sec. II we review the
mathematical formulation of the problem. In order to get a
first insight into the feasibility of an exact inversion, we
study in Sec. III a situation in which the scattering profile is
sampled at only two locations, corresponding to a medium
consisting of two turbid slabs. We will then show the math-
ematical complexity that has to be overcome to generalize
this method to finer spatial sampling rates of the medium. We
complete this work with an outlook on future work.

II. THE ONE-DIMENSIONAL MODEL SYSTEM

The interaction of the intensity-modulated laser field with
a heterogeneous medium is described macroscopically by the
Boltzmann equation. If we restrict the propagation direction
to only one dimension, the resulting equations for the signal
irradiance �intensity� I�x , ± ,�� along the positive and nega-
tive x directions are

�− i� + �/�x�I�x, + ,�� = − ��s�x� + �a�x��I�x, + ,��

+ �s�x�I�x,− ,�� �2.1a�

�− i� − �/�x�I�x,− ,�� = �s�x�I�x, + ,��

− ��s�x� + �a�x��I�x,− ,�� .

�2.1b�

The parameter � is the modulation frequency divided by the
speed of light in the host medium.

In vector notation, I��x ,����I�x , + ,�� , I�x ,− ,���, we can

rewrite this in a more compact form, � /�xI��x ,��= ��i�
−�a�x���+�s�x�N� I��x ,��, where we have introduced the
diagonal Pauli matrix, ����1,0� , �0,−1�� and the nilpotent
matrix N���−1,1� , �−1,1��. As a result the generator takes
the form G�x���i�−�a�x���+�s�x�N. For a medium of to-
tal width W, we obtain the propagator solution
P�exp��0

WdxG�x���, where P� � denotes the position ordering
operator defined as P�f�x1�g�x2���g�x2�f�x1���x2−x1�
+ f�x1�g�x2���x1−x2� and where ��. . .� denotes the Heaviside
unit-step function. The operator P is the spatial analog of the
time-ordering operator frequently used in the solution of
nonautonomous equations of motion �38�.

The propagator for the forward problem can be expressed
as an infinite number of products of operators. If we divide
the medium into M �W /�x equal intervals, and approximate
the corresponding scattering and absorption coefficients
within each interval by constants, we can then apply the
position-ordering operator to the product and obtain
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K��� � P	exp
�
0

W

dxG�x��

= exp�G�xM��x� . . . exp�G�x2��x�exp�G�x1��x� ,

�2.2�

where the center positions are defined as xm��m−0.5��x,
for m=1,2 , . . .M. The four elements of each space-evolution
�transfer� matrix can be obtained by diagonalizing the matrix
G and corresponding exponentiation of the diagonal form,
leading to

�exp�G�xm��x��1,1 = cosh���xm��x� + �i� − �s�xm�

− �a�xm��sinh���xm��x�/��xm�
�2.3a�

�exp�G�xm��x��1,2 = − �exp�G�xm��x��2,1

= �s�xm�sinh���xm��x�/��xm�
�2.3b�

�exp�G�xm��x��2,2 = cosh���xm��x� − �i� − �s�xm�

− �a�xm��sinh���xm��x�/��xm� ,

�2.3c�

where ��x����i�−�a�x�−�s�x��2−�s�x�2�1/2.
We should point out that in contrast to a spatially depen-

dent scattering parameter �s, for a single slab with �constant�
coefficient �s, the corresponding transfer matrix can be ex-
pressed entirely in terms of the transmission and reflection
amplitudes, T and R, with respect to light injected from the
left side of the medium. Defining the right and left traveling

amplitudes at the edges of the medium as I��x=0,��
��1,R� and I��x=W ,����T ,0�, we use the propagator solu-
tion to solve for R and T. For a single turbid slab of width W
we obtain

R��� = − 2�sWS���/�− 2�sWS���

− 2�C��� − �i� − �a�WS����� �2.4a�

T��� = − 2�sWS���/�− 2�sWS���

− 2�C��� − �i� − �a�WS����� , �2.4b�

where

C��� � cosh���i� − �a − �s�2 − �s
2�1/2W� �2.4c�

S��� � sinh���i� − �a − �s�2 − �s
2�1/2W�/

�i�� − �a − �s�2 − �s
2�1/2. �2.4d�

As we assume complete knowledge of the scattered light
spectrum, T��� and R���, we also know the precise form
of the total transfer matrix, K������T−R2 /T ,R /T� ,
�−R /T ,1 /T��. We note that this matrix has the determinant
equal to unity, but the matrix is not unitary as its two eigen-
values are not unimodular.

Let us now return to the composite system. For a medium
with a spatially dependent scattering coefficient �the compos-

ite system�, however, the knowledge about the total reflec-
tion and transmission amplitudes alone is not sufficient to
determine all four matrix elements of the total transfer matrix
K���. The determinant of K��� is 1, as the determinant of
each product matrix in Eq. �2.2� is unity. If we solve �T ,0�
=K����1,R� together with the determinant condition, we ob-
tain only the general form K���= ��	 , �T−	� /R� ,
�−R /T ,1 /T��, where 	 is unspecified. The full determination
of K��� also requires the measurement of the reflection and
transmission amplitudes for light that has been injected into
the medium from the other �right� end of the medium, lead-
ing to Rt��� and Tt���. It should be clear that these two
amplitudes are the same as obtained from light injected from
the left side, but for a transposed medium, denoted as one in
which the sequence of scattering coefficients has been re-
versed. In other words we obtain

Rt��,�s1,�s2, . . . ,�sM;�a1,�a2, . . . ,�aM�

= R��,�sM, . . . ,�s2,�s1;�aM, . . . ,�a2,�a1�

and

Tt��,�s1,�s2, . . . ,�sM;�a1,�a2, . . . ,�aM�

= T��,�sM, . . . ,�s2,�s1;�aM, . . . ,�a2,�a1� .

In contrast to the propagation of monochromatic electro-
magnetic radiation through dielectric media where Rt��� and
R��� are directly related to each other �39�, in the case of
turbid media the two reflection amplitudes can be quite dif-
ferent. Using the measured data, we therefore can construct
the entire propagator matrix using its definitions �T ,0�
=K����1,R� and �Rt , 1�=K����0,Tt�, from which we obtain
K���= ��Tt−R�Rt /Tt� ,Rt /Tt� , �−R /T ,1 /Tt��. As the determi-
nant of the matrix K��� has to be unity, it follows immedi-
ately that the transmission coefficients for the transposed and
the original medium are identical, T=Tt for all frequencies
�, simplifying the matrix to K���= ��T−R�Rt /T� ,Rt /T� ,
�−R /T ,1 /T��. This reduces our original problem to solving
this matrix equation:

��T − R�Rt/T�,Rt/T�,�− R/T,1/T��

= exp���i� − �aM�
 + �s,MN��x� . . .

�exp���i� − �a,2�
 + �s,2N��x�

�exp���i� − �a,1�
 + �s,1N��x� . �2.5�

In summary, the goal would be to use the complete
knowledge of the numerical values of the three complex val-
ues T, R, and Rt for any value of � to reconstruct the set of
M scattering coefficients �s,1 ,�s,2 , . . .�s,M, and M absorp-
tion coefficients �a,1 ,�a,2 , . . .�a,M. Unfortunately, we have
not been able to find a generally applicable scheme to solve
these infinitely many coupled transcendental equations, and
we have to exploit specific properties of the functional struc-
ture of these equations to find at least solutions for simplified
situations, such as those where the entire medium is de-
scribed by a smaller number of coefficients. We will discuss
one possible approach in the next section and explore
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whether the knowledge of R���, T���, and Rt���, or any
combination, is suitable for reconstructing the scattering co-
efficients.

We should note that the discretized medium is equivalent
to a layered scattering medium in which each layer has a
different but constant scattering strength �i. As the entire
medium is characterized by the same host medium, it is de-
scribed by a single index of refraction. As a consequence, the
different layers with different scattering strengths are per-
fectly index-matched and there are no additional surface re-
flections present that would require the Fresnel coefficients.
For works on nonscattering layered dielectric media that dif-
fer by their index of refraction, see �11�.

III. A SOLUTION ALGORITHM FOR THE TWO-SLAB
SYSTEM

From now on let us assume that �a�x�=0, and define
�s,m��m for m=1,2 , . . . ,M and �x=W /M. We should note
that a simultaneous determination of �a�x� and �s�x� is very
difficult. For the special case of �s�x�=0, it is not even in
principle possible to reconstruct �a�x� from the transmitted
light, as the solution depends only on total space-integrated
absorption �dx���x�� for every modulation frequency �. The
next case would evolve two nonzero, but constant absorption
�a and a position-dependent scattering �s�x�. The feasibility
of the various methods outlined below to retrieve �s�x� relies
on the fact that the relevant transcendental equations and
their � derivatives at �=0 reduce to algebraic equations in
�m; this property, however, is no longer true for nonzero
absorption. Our assumption that the spatial axis is discretized
in equidistant steps leading to slabs with identical width
�x=W /M is a nonrestriction assumption, as all formulas de-
rived below can be easily extended to include slabs of non-
identical width. The drawback would be that the formulas are
just more complicated. We assume, however, that we know a
priori the total length W of the medium.

The two-slab system is an ideal system to explore our
very fundamental questions about invertibility. For example,
it is simple enough such that three approaches toward inver-
sion can be evaluated and analytical formulas can be given in
each case. The particular form of the solution can then be
analyzed in each situation with regard to possible generali-
zations to systems that are sampled at more than just two
points. Using the two-slab system as an example, we will
show that depending on the type of measurement as well as
the direction from which light is injected into the medium,
various inversion schemes can be derived. We explore the
corresponding functional relationships between the measured
data and the scattering coefficients for these simpler systems
with the hope to discover possible regularities of these
schemes, which can then be generalized to media with an
arbitrary number of slabs.

For a single slab with an unknown single parameter �, the
transmission and reflection coefficient takes the form of Eqs.
�2.4�. Due to the complicated dependence of the coefficient
� involving products of � with hyperbolic functions, even
for a system consisting of a single slab �M =1�, it is not
possible to find a closed form solution expression for � as a

function of the measured quantities T��� and R��� for non-
zero values of the frequency �. However, for �=0 both so-
lutions simplify significantly to R�0�=�1W / �1+�1W� and
T�0�=1/ �1+�1W�, both of which can be easily inverted to
obtain �1= �R / �1−R�� /W= ��1−T� /T� /W. From now on we
define R�R��=0� and T�T��=0�.

For the two-slab system characterized by two scattering
coefficients �1 and �2, we have to distinguish between the
two possible directions of incoming light. Let us first assume
we measure exclusively the transmission spectrum T���. Us-
ing the expressions for the total transmission coefficient and
its derivate at �=0, denoted by ��T, we obtain the following
two solutions:

�1 = �W�1 − T� − �2W�i3��T + �1 + T + T2�W��1/2�/�TW2�
�3.1a�

�2 = �W�1 − T� + �2W�i3��T + �1 + T + T2�W��1/2�/�TW2� ,

�3.1b�

and a second set of solutions for which �1 and �2 are ex-
changed. This ambivalence is not surprising, as we saw
above that the transposed and the original medium have the
same transmission amplitude for all frequencies; thus indi-
cating that an unambiguous determination of �1 and �2 from
the transmission profile only is not possible. This can also be
seen from a physical point of view. Any particular scattering
path of the light through the two slabs that exits the medium
on the other side is characterized by a transit time and a
probability. It turns out that each particular path has a second
�equivalent� one that differs only by the sequence of loca-
tions where the path gets reversed. We also remark that two
different scattering systems, A and B, whose coefficients are
related to each other by a simple translation, �A�x�=�B�x
+L�, also lead to identical transmission amplitudes. This
finding can be immediately generalized to any multislab sys-
tem as the transmission profile is always identical to that of
its transposed system T=Tt. Therefore a unique imaging
based on the transmission spectrum only is not possible.

Let us next assume we measure only the reflection ampli-
tude R��� for the two-slab system. In this case the resulting
algebraic equations for R and ��R can be inverted, and we
obtain for our two scattering coefficients �1 and �2,

�1 = �− �2R + 3�W1/2 + �− i24��R + �9 − 24R

+ 8R2�W�1/2�/�2�R − 1�W3/2� �3.2a�

�2 = �− �2R − 3�W1/2 − �− i24��R + �9 − 24R

+ 8R2�W�1/2�/�2�R − 1�W3/2� . �3.2b�

We should point out that �similar to the equation for ��T� the
equation for ��R is also quadratic in �1 and �2, but because
of the requirement of positivity, the second pair of math-
ematical solutions �not given here� for ��1 ,�2� can be
discarded as unphysical. This shows that in contrast to the
transillumination geometry, an inversion solely based on the
knowledge of the reflection spectrum, R���, permits an un-
ambiguous recovery of the scattering coefficients for the
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two-slab system. However, the inversion formula �3.2� is
complicated and a reliable scheme to generalize this to a
multislab medium is nontrivial.

Another inversion formula based on R and T can be de-
rived if we equate the �2,1� and the �2,2� elements of the
propagator matrix at �=0 and the first derivatives with the
experimentally determined one. Two of these four equations
is quadratic in �1 and �2, but by adding the two equations
appropriately the quadratic terms cancel out and the two un-
physical solutions can be eliminated, leading to the following
inversion formula:

�1 = �W�2 + 3R/T� + i2����R − 1�/T��/W2 �3.3a�

�2 = �− W�2 + R/T� − i2����R − 1�/T��/W2. �3.3b�

In contrast to the inversion formulas Eqs. �3.1� and �3.2�,
which contain complicated coefficients and square roots, the
formula �3.3� has a simpler structure and suggests that if
R��� and T��� are measured, possibly a generalization to a
multislab could be accomplished.

IV. GENERALIZATION TO MULTISLAB SYSTEMS

The general approach to inversion is twofold. First we
have to find an appropriate set of equations that relate the
measured transmission and reflection amplitude for the com-
posite system to the individual scattering coefficients for
each subslab. The challenge would be to identify certain
regularities or schemes that permit us to generalize these
equations to media with an arbitray number of slabs. The
second challenge would be to find appropriate solution tech-
niques for these coupled nonlinear equations. As we have
seen in Sec. II, using just R or T as the basis leads to solu-
tions that are very hard to generalize to multislabs.

A. R+T approach

Due to the functional dependence on the frequency �, it
turns out that the quantity R���+T��� and its frequency de-
rivatives provide a promising basis to obtain a sufficient
number of equations from which the scattering coefficients
can be determined. For zero frequency, we have R+T=1,
and the first derivative evaluated at �=0, denoted by ���R
+T�, can even be found analytically for an arbitrary number
of slabs M,

���R + T� = i�W/M��M + �W/M��m�2m − 1��m�/

�1 + �W/M��m�m� , �4.1�

where the summation �m extends from m=1 to m=M. How-
ever, we have not been able to find similar formulas for
higher derivatives. Let us briefly outline the analytical solu-
tions obtained from this approach. For the two-slab system
we obtain

�1 = − �i2���R + T� + �2 + R�W�/��R − 1�W2� �4.2a�

�2 = �i2���R + T� + �2 − R�W�/��R − 1�W2� , �4.2b�

which is equivalent to the solution Eq. �3.3�.

A unique determination of �1, �2, and �3 for a three-slab
system requires at least three linearly independent equations.
However, these equations are nonlinear and more than just
three equations are necessary to uniquely determine the cor-
rect triplet of scattering coefficients. The derivation is ex-
tremely cumbersome and nearly impossible without sym-
bolic manipulation software such as MATHEMATICA. The
dependence of R, T, and higher derivatives of the sum of the
two is nontrivial such that we omit these equations here and
state only the final inversion formula,

�1 = − D�9����R + T��2TW2 + i2���R + T��4T − 15�TW3

− 17TW4 + 8T2W4 + iE� �4.3a�

�2 = 2D�i2���R + T��T − 3�TW3 − 2TW4 + 2T2W4 + iE�
�4.3b�

�3 = − D�− 9����R + T��2TW2 + i2���R + T��4T + 3�TW3

+ TW4 + 8T2W4 + iE� , �4.3c�

where D and E denote

D � �4T2W4�W + i���R + T���−1 �4.3d�

E � �T2W4�135����R + T��4 − 432i����R + T��3W

+ 108���
2 �R + T��TW2 + 2�����R + T���2�− 195 + 24T

+ 44T2�W2 + �15 − 8T − 88T2�W4 + i4����R + T��

��27���
2 �R + T��TW + �31 − 14T − 44T2�W3��1/2.�4.3e�

The complexity of this result certainly suggests that a gener-
alization to more than three slabs is again nontrivial.

B. Q-Qt approach

So far we have seen that an approach that is based on the
knowledge of R��� and T��� leads to a formally easier in-
version formula than those based on either R��� or T���. We
will discuss now an approach that even relies on the full
knowledge of the entire propagator matrix K���. In other
words, R���, T��� as well as Rt��� need to measured. As we
discussed in Sec. II, this requires a scattering setup for which
the input light is injected into the medium from both direc-
tions. We derived in Sec. II the form of the propagator matrix
K���= ��Tt-RQt� ,Qt� , �−Q ,1 /Tt��, where we denote the quo-
tients Q����R��� /T��� and the corresponding quotient of
the transposed medium Qt����Rt��� /T���. We will now
describe a scheme that uses these ratios to reconstruct the
scattering coefficients. It is based again on the observation
that the propagator K��� becomes algebraic for the special
case of an unmodulated laser field, �=0. It should be clear
that the knowledge of only two matrix elements of K��
=0� does not provide sufficient information for a unique de-
termination of all scattering coefficients. In the following we
will examine whether a coupled system involving the deriva-
tives of the matrix K��=0� with regard to the frequency �
evaluated at �=0 can be used to provide the additional con-
straints necessary to uniquely determine the set of ���:
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K�� = 0� = 1 + ��M + . . . �2 + �1�NW/M �4.4a�

��K��� = ���exp��i�
 + �MN�W/M�

�exp��i�
 + �M−1N�W/M� . . .

�exp��i�
 + �2N�W/M�

�exp��i�
 + �1N�W/M�� �4.4b�

����JK��� = ����J�exp��i�
 + �MN�W/M�

�exp��i�
 + �M−1N�W/M� . . .

�exp��i�
 + �2N�W/M�

�exp��i�
 + �1N�W/M�� . �4.4c�

Here we define the �Jth� derivative operator as ����Jf���
���J /��Jf�����=0 evaluated at �=0. A general form for the
derivative of each single factor, ����Jexp��i�
+�mN��x�
�����JEm is given in the Appendix. Using the formula for
the derivative of each single subslab propagator matrix, we
can then compute the derivatives of the �noncommuting� ex-
ponential product matrices,

����J�EM . . . E2E1� = �
�M!/�
1!
2! . . 
M!��

�����
MEM . . . ����
2E2����
1E1,

�4.5a�

where the sum �
 extends over all non-negative values of
the M parameters 
m, constrained only by 
1+
2 . . . +
M
=J.

Let us illustrate this scheme for M =1, 2, and 3. For a
single slab, M =1, Eq. �4.4a� is sufficient for the inversion,
K���=1+�1NW, leading to

�1 = Q . �4.6�

From now on we will use notation Q�Q��=0� and
����JQ���J /��JQ�����=0. We note that the matrix K��=0�
is real, and we have used the conservation law that R��
=0�+T��=0�=1. Correspondingly, in this case either R��
=0� or T��=0� would be sufficient to uniquely determine the
value for �1.

Let us illustrate how the scheme works for M =2. Using
the formula from the Appendix we have the following two
matrix equations:

K�� = 0� = 1 + ��2 + �1�WN/2 �4.7a�

��K�� = 0� = iW
 − iW2��1 + �2�1/4 − i��1
2 + �2

2

+ 6�1�2�W3N/24 + iW2�1
N/4 + iW2�2N
/4.

�4.7b�

As we need only the two solutions ��1 ,�2�, not all of these
eight coupled equations can be linearly independent of one
another. In fact, each of the four equations in Eq. �4.7a�
restricts only the sum, ��2+�1�, such that at least one more
equation from the set Eq. �4.7b� needs to be taken into ac-
count. However, these equations are quadratic and therefore
when solved by themselves, lead to an additional �unphysi-

cal� solution. This additional solution depends on which ma-
trix element of ��K��=0� is used in addition to Eq. �4.7a�. If
we add the equations for ���K��0��1,2, and ���K��=0��1,2

in a suitable way, the quadratic terms can be eliminated and
the resulting set of equations becomes linear in �1 and �2,
leading to the remarkable simple final solution

�1 = Q/W + �i/W2����Q − Qt� �4.8a�

�2 = Q/W − �i/W2����Q − Qt� , �4.8b�

showing that also the two-slab system can be inverted ex-
actly from the experimental data K���.

To solve the three-slab inversion problem, we have to
equate the �1,2� and �2,1� element of the measured K���, and
its first and second frequency derivative, ��K and ��

2 K, with
the corresponding analytical expressions. This set of six
coupled nonlinear equations is complicated but algebraic and
can be solved for the triplet ��1 ,�2 ,�3�, leading to

�1 = 9�2Q���Q − Qt� + i����Q − Qt��2/W − 3��
2 ��

2

��Q − Qt�/W�/�8W���Q − Qt�� �4.9a�

�2 = 3�− 2Q���Q − Qt� + 9i��
2 �Q − Qt�/W�/�4W���Q − Qt��

�4.9b�

�3 = 9�2Q���Q − Qt� − i����Q − Qt��2/W

− 3i��
2 �Q − Qt�/W�/�8W���Q − Qt�� . �4.9c�

Even though this sequence of solutions based on Q and Qt

given by Eqs. �4.6�, �4.8�, and �4.9� takes the most promising
form with respect to a possible generalization to M slabs, the
corresponding formula for the four-slab systems is extremely
complicated. Here �1, �2, and �3 can be expressed as rea-
sonable functions of �4. The analytical form of the latter,
however, is too complicated to be reproduced here. We point
out that the derivation required a division by the difference
Q-Qt, formula �4.9�, has convergence problems for Q=Qt, in
other words for those symmetric media for which �1=�3.

C. Numerical examples for both approaches

The form of the inversion formulas presented here is a
consequence of the specific functional � dependence of the
scattering amplitudes for a system with three slabs. As a
numerical test, we have assumed specific values for
��1 ,�2 ,�3� and then computed the optical responses
R��� , T���, and Rt��� for various frequencies. We then used
the symmetric three-point finite difference formulas to com-
pute the first and second frequency derivatives, e.g., ��R
��R��=��−R��=−��� / �2��, etc., and inserted the results
into the inversion formulas to reconstruct the scattering co-
efficients. As this was just a consistency check, the scattering
parameters were exactly reproduced by all formulas.

As real media, however, are typically described by a con-
tinuous position dependence �=��x�, we can examine
whether we can extend the range of applicability of the three-
slab approximation-based inversion formulas numerically to
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these systems. As the frequency dependence of a three-slab
propagator can be functionally completely different than one
obtained for a continuous medium, it is not clear ab initio
whether our inversion formulas are applicable at all, as they
could predict sets of unphysical negative or even complex
scattering coefficients.

As our first test case let us examine a medium with small
scattering coefficient where the diffusion approximation
would be inapplicable. We assume the scattering coefficient
is given by ��x�=x exp�−x� for 0�x�5. In order to obtain
the total propagation matrix with practically arbitrary preci-
sion, we can use the finite-product expansion Eq. �2.2� and
the discretized form given by Eq. �2.3�. This approach gives
us the numerical values T���, R���, and Rt��� for our me-
dium for any frequency �. In Fig. 1�a� we display the origi-
nal ��x� together with the predictions of the �R+T� method
�dots� and the �Q-Qt� method �crosses�. The reconstructed
values ��1 ,�2 ,�3� turn out to be quite reasonable in this
nondiffusive regime.

To stress the nonperturbative character of this approach
to inversion, we have used another medium, ��x�
=100x exp�−x�. If we define an average scattering strength as

���x��=19, the width of W=5 contains roughly 100 inverse
scattering lengths, making this medium highly scattering.
The data presented in Fig. 1�b� show again good agreement
in this highly nonperturbative regime. Comparing the data in
Figs. 1�a� and 1�b� suggests that despite the nonlinear char-
acter of the inversion formulas, the predicted triplet seems
almost to be linear in the scattering strengths.

We should complete this section with an interesting com-
ment about the nonlocal as well as nonlinear character of
both inversion schemes. This is best demonstrated for a six-
slab system with a given set of scattering coefficients
��a ,�b ,�c ,�d ,�e ,�f� and W=6. As expected for the par-
ticular set �5,5,4,4,3,3�, both approaches reproduce the cor-
rect values ��1 ,�2 ,�3�= �5,4 ,3�, as this particular six-slab
matrix K��� can be matched exactly by a K��� for a three-
slab matrix �with �x=2 used as a basis for our inversion�.
Let us now repeat this inversion for �5,7,4,4,3,3�, in which
only the second slab was chosen different. One could expect
that now only the first value �1 is affected by this change.
However, the �R+T� method predicts �5.4,4.7,2.7� and the
�Q-Qt�-method predicts �6.4,2.8,3.7�. The fact that all three
predicted scattering parameters are different shows that the
mapping from ��a ,�b ,�c ,�d ,�e ,�f� to the triplet
��1 ,�2 ,�3� is not only nonlinear but also nonlocal, in other
words, changes of the scattering strength �b at the entry
region of the medium result in different values not only for
�1, but for each of the three effective scattering parameters.

We also note that an increase from 5 to 7 in the second
slab leads to an effective reduction from �3=3 to �3=2.7 in
the third slab for the �R+T� method, whereas the �Q-Qt�
method predicts an increase from 3 to 3.7. As the �Q-Qt�
method relies on the measurement of the scattered light
based on both the injected light entering the medium from
the left as well as from right side, the inversion results for the
two media �5,7,4,4,3,3� and �3,3,4,4,7,5� are symmetric,
�6.4,2.8,3.7� and �3.7,2.8,6.4�, respectively. The �R+T�
method, however, is biased toward a single input direction
�light coming in from the left side� and therefore predicts for
the transposed medium an entirely different result,
�2.9,4.3,5.7�, compared to �5.4,4.7,2.7� for the original me-
dium.

V. DISCUSSION AND OUTLOOK

The present work serves only as a proof of concept to
demonstrate that—in principle—the frequency of the inten-
sity modulation can be exploited as a controllable degree of
freedom for imaging. We have used a simple one-
dimensional system to illustrate the inherent difficulties to
invert a system that is described by the Boltzmann equation.
In this case even the solutions of the forward problem can be
expressed only as a limit of an infinite number of products of
single-slab propagator matrices. We have outlined several
approaches, among which the most promising one, permit-
ting a possible generalization to those systems that are
sampled at arbitrary numbers of positions, was based on the
difference of the ratios of the reflection and transmission
coefficients of the original and the transposed system and

FIG. 1. Application of the three-slab based, nonperturbative im-
aging scheme to a medium with continuously changing scattering
strength as a function of the position x �in arbitrary units� ��a�
��x�=x exp�−x�, �b� ��x�=100x exp�−x��. The dots are the recon-
structed results from the �R+T� method outlined in Eqs. �4.3�,
whereas the crosses are the predictions according to the �Q-Qt�
method by Eqs. �4.9�. To obtain the propagator matrix K��� for the
medium it was sampled at ten points.

NONPERTURBATIVE RETRIEVAL OF THE SCATTERING… PHYSICAL REVIEW E 74, 061903 �2006�

061903-7



required a measurement for injection of light from both di-
rections into the medium. It turns out that the corresponding
equations are transcendental, but for zero modulation fre-
quency they become algebraic. In order to have a sufficient
number of linearly independent equations to generate solu-
tions for all the scattering coefficients of each subslab of the
composite system, higher-order derivatives with respect to �
and evaluated at �=0 also had to be considered. Correspond-
ingly, this particular approach cannot be used to identify
which range for the modulation frequency is best suited for
imaging with high resolution. We were able to demonstrate
its applicability for a medium sampled at 1, 2, 3, and 4 po-
sitions. Many of the results reported here could only be ob-
tained from symbolic manipulation software packages such
as MATHEMATICA.

We point out that for nonzero absorption, however, this
method does not convert the transcendental equations into
algebraic ones and one needs to study other methods. For
instance, one could try to obtain iterative schemes that are
based on the reduction of the properties from an M-slab sys-
tem to that of an �M-1� slab system. The formulas worked
out in Sec. II could be applied as building blocks for those
iterative schemes in which sequentially the leftmost subslab
is obtained. As a first step in such an iterative scheme the
exact matrix K��� of the composite system could be ap-
proximated by a product of only two single-slab propagator
matrices for which the equations derived in Sec. II provide
the relationships to obtain these effective scattering coeffi-
cients. Then our formulas in Sec. II could be used to find the
effective scattering coefficients for the leftmost subslab. The
corresponding inverse of the propagator matrix of the left-
most slab could then be multiplied with the total propagator
matrix, therefore reducing the problem to finding only the
remaining �M-1� subslabs. The feasibility and convergence
of these schemes is presently not clear, as the propagator
matrix for a twoslab system has a functionally different de-
pendence on the frequency � as an effective single-slab sys-
tem. We will report on the merits of such an approach else-
where.

An important future challenge might also be to explore
how results from the one-dimensional model system can be
generalized to three-dimensional systems. For instance, the
observation that a transmission-only based imaging cannot
be unique generalizes immediately to media of more than
one dimension. On the other hand, the present system is
more than just a �nontrivial� mathematical exercise as even
the reduced dimensional model system can be studied ex-
perimentally based on only plane parallel dielectric layers
�40� such as multiple layers of thin films.
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APPENDIX

The derivatives of the exponential of a sum of two non-
commuting operators, exp��A+B�, can generally be given
only as an infinite sum of nonexponential operators �41�. In
our case, however, one of the two operators in the exponent
is nilpotent, B��N�x, and as a result, finite expansions of
the derivatives can be given. To abbreviate our notation, we
use A� i
�x. In order to examine the derivatives, let us first
expand the exponential operator,

f��� � exp��A + B�

= �
n=0

�

��A + B�n/n!

= 1 + ��A + B� + ��A + B���A + B�/2!

+ ��A + B���A + B���A + B�/3! + ¯ . �A1�

With this expansion we obtain the derivatives for each term

��
Nf�0� = �

j=0

N+1

��A�N�,B�j��/�j + N�!. �A2�

Note that the summation is finite and contains only �N+2�
terms. The function ��A�N� ,B�j�� represents the sum of those
unique products, that can be obtained by arranging N opera-
tors A and j operators B. For example, for N=3 and j=1 we
obtain ��A�3� ,B�1��=AAAB+AABA+ABAA+BAAA. As
AA=−�x21 is proportional to the identity matrix, this ex-
pression can be simplified to 2A2�AB+BA�. Similarly, for
N=3 and j=2 we obtain

��A�3�,B�2�� = �AAABB + AABAB + AABBA + ABABA

+ BAABA + ABAAB + ABBAA + BABAA

+ BAAAB + BBAAA� .

Also, this expression simplifies significantly as B2=0,
and we obtain AAABB=AABBA=BAABA=ABAAB
=ABBAA=BBAAA=0. As a consequence, ��A�3� ,B�2�� re-
duces to 3A2BAB+ABABA.

With these considerations we obtain immediately

f�0� = 1 + B + B2/2! − B3/3! + . . . = 1 + B . �A3�

The first derivative has to take the noncommutativity of A
and B into account, and we obtain the sum of only three
nonzero terms:

��f�0� = A + �AB + BA�/2! + �BAB�/3! �A4�

Any possible higher term is zero. For example, the fourth-
order term ��A+B���A+B���A+B���A+B� /4! can be ex-
pressed as a sum of sixteen products. If we take the deriva-
tive and evaluate at �=0, each of the products contains the
vanishing term BB. Similarly, in the corresponding permuta-
tions of all higher terms where the number of factors B ex-
ceeds the number of factors A, the occurrence of the product
BB is unavoidable. Using �A2�, similarly higher derivatives
can be derived, such as
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����2f�0� = A2/2! + �AAB + ABA + BAA�/3! + �ABAB + BABA�/4! + BABAB/5! �A5�

����3f�0� = A3/3! + 2A2�AB + BA�/4! + �3A2BAB + ABABA�/5! + �ABABAB + BABABA�/6! + BABABAB/7!.

�A6�

The functional dependence for the general scheme in obtaining the higher derivatives should be obvious.
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